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Abstract. A Lagrangian system subject to linear non-holonomic constraints may be represented
in several different geometrical frameworks. We describe one such framework, involving the
addition of an extra term to the Cartan 2-fofof the unconstrained system, which is dual to

the traditional approach of adding a reaction force to the unconstrained dynamical vector field
I'. We show how this framework is closely related to the method of constructing a 2-form
Q) when the constraints are given by a connection on an auxiliary bundle, as described in our
earlier work.

1. Introduction

Consider a mechanical system with non-holonomic constraints. In an earlier work [10]
we described a geometrical framework for such a system, where the byndle — R
represented the usual fibration of a configuration space, and where a conmedio@an
auxiliary bundlerr : E — M was used to construct the constraint manifdfdas an affine
sub-bundle of/'r; — E. Many of the objects familiar from the geometrical study of
unconstrained systems had their analogues in this new framework: when the system was
derived from a Lagrangiah we were able to use these objects to construct a fundamental
2-form ), and, at the same time, give an intrinsic description of the dynamics of the system
in terms of a second-order differential equation field (SODE)efined on the constraint
manifold.

The purpose of the present work is to look at two questions which arise naturally from
the construction we have described. The first concerns the choice of the auxiliary bundle
w . E — M. If coordinates onE are (¢, ¢%) whereA = 1, ..., n, and the constraints are
given by them equations

Aualt, CI)CIA +ba(tv f]) =0

where the matrixA,, has maximal rank, we may solve these equations to givef the
velocity coordinates (denoteg’) in terms of the othek = n — m (denotedg?):

q“ = By(t,q)q" + B(t, q).

We would then denote the coordinates Brby (¢, g%, ¢*) and seleciM to have coordinates
(z, g%). The point of our previous work was to consider the bundle structur& — M as
part of the data, as is done also, for example, in the work of Béeth[1]. Different choices
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of M, corresponding to different choices of the free and constrained velocity coordinates,
will give a different fundamental 2-forr,, satisfyingl’ |2,, = 0. It is therefore of interest

to show that we may mimic some aspects of this construction to define a connediwh

a fundamental 2-forn®2 without making a particular choice of auxiliary bundle.

A second question arises when our approach is compared with the more traditional
one of constructing the SODE for the unconstrained problend ‘an, restricting it to the
constraint manifold/?, and then adding an additional vector field (representing the reaction
force) so that the result is a tangent.t$; see, for example, [5-7] for descriptions of this
approach, and [2, 11] for similar constructions in the autonomous case. When the additional
reaction force is expressed in terms of a basis constructed from the constraints and the
Lagrangian, its components are just the Lagrange multipliers used in the formulation of the
Euler—Lagrange equations. Again, we shall see that the fundamental Z¥ancorporates
just these Lagrange multipliers in a natural way. In a significant sense, therefore, our
approach is dual to the traditional one.

2. Results

Let J1(E, k + 1) denote the manifold ofk + 1)-dimensional contact elements ov€r The
elements of/1(E, k + 1) are equivalence classes of immersion®R6f! in E near a given
point, with equivalence when the immersions are tangents to each other at that point. The
bundleJY(E, k + 1) — E is, therefore, th&k + 1)-dimensional Grassmannian bundle over
E, and an element of }(E, k + 1) projecting toa € E may be considered as @& + 1)-
dimensional subspace @f E. In fact, JX(E, k + 1) is slightly too large for our purposes:
if 1 E — R is the fibration of the configuration spaée (this is the map denoted, in
our earlier work [10]) we are interested in the open submanifgidt, k + 1) constructed
from immersions transversal to the fibrestof

Each sectiow : E — J}(E, k+1) defines ak -+ 1)-dimensional distribution oi. Let
J! be the set of jetg!y e J1r where the tangent vector to the curyeat y (t) € E lies in
the (k + 1)-dimensional subspace(y (t)) of T, E; this definition does not depend on the
particular representative of the jet jly, as it involves only first-order contact. With this
definition, J! becomes a submanifold oftz, the constraint submanifoldFurthermore, for
each point of/! the annihilator of the correspondirig + 1)-dimensional subspace @f E
is anm-dimensional subspace 8f E; pulling this back to/} defines ann-dimensional co-
distribution H on J? (this is called the Chetaev bundle in [6], where a somewhat different
construction is used for constraints which are not necessarily linear). A 1-forf taking
its values inH will be called aconstraint form Finally, a vector fieldl' on J! will be
called a SODE field if it satisfies the conditiotis, dr) = 1 and(I", i*(0)) = 0, whered is
any contact form o'z andi : J! — J'z is the inclusion.

Ouir first result is given by the following theorem.

Theorem 1 Let L be a positive-definite Lagrangian oftz with Cartan 1-formd,, and
let 5 be a(k + 1)-dimensional distribution ot over z. There is then a unique constraint
form 5 on J! with the property that the 2-forr defined by

Q=i*(dgy) —dr Ap

contains exactly one SODE field in its kernel.

The proofs of this and the following two theorems will be given in section 3.
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To see the relationship of this result to our previous workMdbe a(k+1)-dimensional
manifold andr : E — M a bundle: thew!r is an open-dense submanifold b¥(E, k+1)
(see, for example, [9] theorem 3.28). The bundl¢E, k + 1) — E may be thought of
as the ‘projective completion’ of the affine bundlér — E. If we also requireM to be
fibred overR in such a way that the composite m&p— M — R is identical tor, then
we always have/in ¢ JYHE, k+1).

A connection onx is a sections : E — Jm and is, a fortiori, also a section
6 E— JXE,k+1). There are, however, some sectighs E — J(E, k + 1) which
do not take their values entirely within'z, and so do not arise from (global) connections
on the particular bundle : E — M: in coordinates adapted to this fibration, such sections
yield ‘infinite derivatives’ at certain points. To emphasize the link with connections,on
we could also call any section: E — JX(E, k + 1) a (k + 1)-dimensional connection on
E overr.

Let (z, g%, g*) be coordinates o, chosen so that (restricted to this coordinate patch)
takes its values in the coordinate patch BE, k + 1) represented byr, ¢%, ¢%, ¢¢, ¢%):
this situation arises automatically if we have a bundle E — M such thatz (E) C J'r,
and if the corresponding coordinates dhare (¢, g%). The corresponding coordinates on
Jit are(t,q% q°, 4%, ¢%), and J: may be described as in [10] by

qu — Bsqa + Ba.
The 1-forms
n* =dg* — BS dg* — B dr

defined locally on/! span the co-distributio. In these coordinates, the result stated in
theorem 1 is that there is a unique set of multiplier functiapssuch that the 2-fornf2
defined locally by

Q =i*(doy) — dr A (Aen®)

contains exactly one SODE field in its kernel.
In [10], we defined another 2-forrf2,, by

Qu =do; —dr A i*W(dL) — N(dL))

whereL = i*L and, in coordinates,

N = “
8q”®n

and

. 9 dB¢ 9 9
U=C%Q — with Ccl=""9%_ BY ) (B%* + B%).
0 ® 94 « dr <3q°‘ + °‘8qb> ( 4 + BY)

Theorem 2 If there exists a fibratiomr : E — M such that (E) C J1r, then the SODE
field T (from theorem 1) also satisfids|2,, = 0.

Corollary. The SODE fieldl" constructed in [10] is independent of the chosen fibration.

We shall now compare this approach with the more traditional one of finding the
constrained SODE field by starting with the unconstrained SODE field and adding a
‘reaction’ force. This uses the construction of a distinguished sub-bundle of the vertical
bundleV Jzr to represent the possible reaction forces (see, for example, [5], theorem 16; a
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similar approach is taken in [3] using almost-product structures). Each constrainform
then gives rise to a reaction vector figlit according to the following rules.

First, the LagrangiarL is used to define a ‘fibre metric alonbfr — E’ in the usual
way, so that ifX, Y are vertical vector fields ot then

§(X,Y) = gup X°YP + gup XYP + g0 XY’ + gup XY

where we have written, for example,s for the submatrixd?L/3¢*d4* of the Hessian of
L. In generalg(X, Y) is a function onJ/'z, although when the Lagrangian is quadratic in
the velocity coordinates we may also consigék, Y) as a well defined function of. At
each pointu € J? projecting top € E, this ‘metric’ defines a mag” : VyE — V,E such
that, considering an element &£ as an equivalence class of cotangent vectors,

0 0
g @) =@ | +hPw-—
9q” |, aq” |,
In this formula we have writteh®” = g* — Bag*® andh*f = g# — B¢, whereg"?
is the inverse of the Hessian matigy z, andg®?, etc are its various submatrices. At each

pointu € J2, there is also a canonical vertical lift operatgr sending a vector iV, E to

a vector inV, J1z, so that
0 0 0 0
Vu\ 7 = a7 Uy = -
aq”1,) 94|, aqhl,)  9q”

We then define

V) = v, (gl (" @)])

so that the vector fiel&’ along the inclusion : J! — Jt is represented in coordinates
as

u

3 3
Va=ht — ppf
g T age

We can now state our final result.

Theorem 3 Let I' be the SODE field o't for the unconstrained Lagrangian system
with LagrangianZ, so thatl" |dg, = 0. Then the vector field® alongi : J} — J'r defined
locally by

F=Tln+ArV"
is tangent to/?}, and is the unique SODE field aft satisfyingl"]Q = 0.

3. Proofs

To prove theorem 1, we shall obtain the equations in local coordinates which must be
satisfied by the components ©f and show that they have a unique solution.
We start by writing @, in coordinates as

9L
T 9gAdgB

where the ‘force formsi? = dq*ﬁ — FA dr are chosen so that the above expression contains
no separate terms irrch 65, If T is a SODE field on/?! then(I", i*04) = 0, so that

[i*do, = i*(gap)(T, i*w™)i*68.

do, 04 A OB + gapw® AOE
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Letting 6# also denote contact forms pulled backbas well as those forms on the whole
of J1z, we have

i*0f = 0P i*0" =n"+ Byo’.

Put®® = dg® — F* dr, where the new force functiong® are to be determined. Then

L] a o a 'Otng dBa
o' = | ByF* — F'+¢q & + o dr + - -

where * -’ represents terms in?, 67 andn”. In this expression, we have writteriai for
the restriction of the total time derivative t§* so that, for example,
dB* dB* dB*¢ 0B
= i’ — + (Bbg” + B® .
dr ot +4 3ql3+( pl T+ )8(]”
We have also omitted the pullback mépoperating on functions where there will be no
confusion. IfT" is such thatI", ®*) = 0, we find that

a

. _ .,dB¢  dB® _ 5
Cli*dd, = (has | BEF® — F* + ¢° o T a + hap(F* — F%) | 0
_ _dB? dB“ _
+<gab<BgFa_Fa+qadta+ dr )+gab(Fa_Fa))nb

whereh.s = gup + ga;,Bg andhyg = gup + gang. We shall, therefore, be able to solve

[G*do, — df A (A,n®)) = O if we can choose the functions* so that the coefficients
of ## vanish; the multiplier functions, will then be determined automatically. But those
coefficients may be written in the form

(Bshaﬁ + haﬁ)Fa + -

and the matrixBSh.s + hepg is non-singular by virtue of the positive-definitenessgak
(it is, essentially, just the restriction @fyz to vectors whose vertical lifts are tangent to
the constraint manifold). It follows that there is a unique local solution to the equations;
uniqueness implies that the solutions may be glued together to give a unique global SODE
field I' and a unique constraint form completing the proof of theorem 1.

A different way to arrive at the same conclusion, offering a further insight into the
nature of the SODE field and the multipliers.,, goes as follows. It is easy to verify that

. aL aL
i, =Ldt + 0%+ i*— | n“.
g% ag®
In computing the exterior derivative of this form, we make use of the following local basis
of vector fields on/! (compare with [10]):
d d a - 0
Xo = + 327, —., I, =
ag* ag® dq“ g%
with dual basis of 1-forms

0%, 1, dr, @* = dg* — F° dr.

Here, of course, the"® and the corresponding expression forare again as yet to be
determined. For any € C*(J}) we therefore write

af

df = X (f)O* + ——n* +T(f)dr + iw"‘
ag“ g%
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Proceeding in this way we find, for example,

0 B¢
dn® = —Codt AO% — —(B%GY + BYn” A df — X5(BH)OP A 9% — ~“%nP A 9%,
n o aqb( «q” + B p(By) ogh"

The calculation of* d9; is now a straightforward matter and yields
. _ ([ OL . L OL
i*do, =T — ) — Xo(L) — | i"— ) C5 | dr A O

aq” aq“

- aL aL

where all the terms contained in the * part are made up of factors involving oné#,

n* and @*. Several things can be learned from this expression. First, we see another
manifestation of theorem 1: there is a unique way to eliminate the termsAmtand the
resulting formQ then has a specific SODE field in its kernel. What we see in addition
here is that this SODE fiel# is determined by

_ (9L - L 0L
r - =X, L)+ [i"— | CS
ag“ ag®

and that the multipliera, can in fact be expressed as

_ ( 8L> L L
M =T11i —1

9g4 dga’

The determining relation foF confirms that, in the case of a fibratian: E — M, we are
talking about the same reduced dynamics.(ghas the one which was uniquely determined
in [10] by the condition" |2,, = 0, thus proving theorem 2. Note further that the regularity
of the matrixBSh.p + hep in this alternative description corresponds to the regularity of the
Hessian matriXd?L/3¢*9¢?, which again is consistent with [10].

To prove theorem 3, we shall find the coordinate expression of the reaction force which
must be added to an unconstrained SODE figldo give the constrained field, and
show that the equations so found are identical to those obtained in the proof of theorem 1.
Therefore let

d ., 0 4 9
P=g T ga T gaa
as usual, and requirg to be a SODE field on}: in terms of the coordinates antz, we
obtain

Pl
a7 gy

a o a 0 o 9 a po -otdBZ dB* d
+(BYG® + B + F* —— + (BLF* +4 - .
aq? ag* ag®

dr dr
where the coefficient 08/9g“ comes from the requirement thAtbe tangent ta/!. We
want the difference between|,, andI" to be a reaction force, so put

=T+ 1V
Then the equations to be solved fBF are

FY _ po — /\bhba X = Ahhba
where we have written
L,d4Bs  dB“

+

@ = BYFY — F% 1 g .
X « 9 dr dr
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The theorem will be proved if we can show that these equations are the same as the equations
we obtained in the proof of theorem 1. But those earlier equations, rewritten in terms of
x¢, are

has(F* — F*) = hagx“
8ab(F* — F*) = gupx“ — hp
and it is straightforward to check, using the identities
hcagab = Slc, - hmgab
and
hheg = —h“hgg

that the two sets of equations are, indeed, identical.

4. An example

Consider a sled which is constrained to move so that its velocity is always in the direction
of its orientation (see, for example, [8] p 94). If the coordinates on the configuration
manifold E = R x (R? x 1) are(t, x, y, ¢), wherex, y represent position angl represents
orientation, then the constraint may be written in the form

y = x tang

for most values ofp, and the Lagrangian (putting for simplicity the mass and the moment
of inertia equal to unity) is

L =12+ 32+ ¢9).
To find the 2-formQ described above, we start with the Cartan form
O =i dx + ydy + ¢ dp — 12+ 32 + ¢ dr
so that
i*do, = (tang di + i seé ¢ dp) A (17, + tane 6,) + di A 6, + dg A 6,

whered,, 0, are the contact forms and = dy —tan¢ dx is the constraint form. Expressing
i* do in terms of force forms,, @4, we find that the existence of a SODE fid¢ldsatisfying

TJ@*dg, —rdt Any) =0
gives the condition
(F, + xptang) seC ¢ 0, + Fyby + (F, tang + idpseé ¢ — )y, =0
so that
F, = —xi¢$tang Fy=0 A= id.
Hence
Q=selow, A, +tang o, A1, + o A by + i SeC POy Any, + % se ptang b, A 6,

and
I 8+'a+‘tan¢8—|-q58 ’<i>tanq>a
=_—+x—+x — Y+ —x .
ot N ox oy g o
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Note in passing that the explicit formula we obtained for the multipliers would for this
example read

oL -
r=T (1 ) = I'(x tang)
ay

and confirms that indeetd = x¢.
We may now take a manifold? with coordinates(s, x, ¢) so that, in the notation of
[10] with L = i*L,

L=1(2%se¢ +¢?
and

do; = seC ¢ di A6, +dp A6, + i tang se€ ¢(dp A 6, + dp A dx).
Then we use the formula

Qu = df; —dr A (i*W(dL) — N(dL))

where
N = 9 ®
dy Ny
and

. 0
= (pseCpb, —iseCpb,) ® P
y

so that

Quy =seC¢di A, +dp A by + itang se ¢ O A 6, + i tang se€ ¢ dp A 6,.

It is straightforward to check thdt |Q, = 0.

Now suppose we choose a different fibratiéh — M’ where M’ has coordinates
(t,y, $), so that
X = ycote
Ny = dx — cot¢ dy
Q= —ycose¢by An, — ycotpcoseépby A b, + cotp w, A,

+coseép w, A b, + wy A by

Q= cose&pwy 0, — 2y cose8¢> COtp Oy A Oy + wg A Oy
d d
af—i-ycot(b —i—y——i-d)f(p—i—yqbcotgb—
Observe that these expressions forand I' are the ones which also follow from the
coordinate transformation = y cot¢ applied to the original expressions, whereas this is
not the case for the relationship betwepy and ;.. This precisely reflects the fact that

Q andT are independent of the choice of a fibration, wher@asis not.
Finally, we may consider the SODE for the unconstrained problem,

r

g .0 a
=3 +xa d:%
and add to it a multiple of
V= i — tanqbi

ay ax



Non-holonomic Lagrangian systems: Il 4273

so that the result is a tangent #¢. We find that

A 9 tanqba ('43se8¢+Ftan¢)a + F 9 +F 9
e - | =W x .y XA w7
3y 9% 3y ax  "ae
so that, as before,

F, = —xptang Fy=0 A= id.

5. Discussion

Given a system with a Lagrangian, a major objective is the construction of the associated
SODE field, as this will describe the system’s motion. For non-holonomic systems, the
traditional method starts with the unconstrained SODE field and adds a vertical vector field
to represent the reaction forces; at each point, the reaction vector must lie in a subspace
described using the Lagrangian ‘metric’. In contrast the constructioR ef Q@ — dr A 7,
as a 2-form with a suitable SODE field in its kernel, involves that metric only in the proof
that there is a unique constraint fornwith the requisite property. This latter approach,
dual to the former one, is perhaps the more straightforward. (An approach described in [3]
using almost-product structures apparently also leads to the 2<o[4).)

There are, nevertheless, significant questions which arise if this point of view is adopted.
In holonomic dynamics, there is a clear prescription for constructing the 2-forfrom
which the motion of the system will be determined: thatSis= df.. In non-holonomic
dynamics, this is no longer the case. We may always construct the 2Sprbut given
a suitable fibrationE — M we may also construct the 2-forif2,,: indeed, the latter
is not unique, as a different fibratioh — M’ may give rise to a different 2-forre,, .
Furthermore, the availability of such a fibration permits the further analysis of the system
in terms of the dynamical covariant derivative and the Jacobi endomorphism, as we have
described elsewhere. It is, therefore, of some interest to see how all these 2-forms are
related.

Clearly, the difference betweeR andQ, must arise from the difference betweii,
and@;. From [10] the constrained Cartan forép is given by#; = Ldt + S| dL, where
the fibrationE — M has been used to define a projection J'r — J! and the vertical
endomorphismsS on Jr then projects onto the vertical endomorphishon J1. As we
observed in the proof of theorem 2, we have

*9 9 -k 8L a
10 =67 +1 8@””

from which it follows that

Q= Qu+dt AGY(L) — NAL)) + df A Aen® +d (sz n“) .
qd

Using the coordinate expressions férand N (see [10]) and the formulae for, and d)*
obtained earlier, it is thus easy to check that

_ L . L L .
.Q:QM—i—(d(i*a_ )—F(i*a, )dz)x\n”—i*a.(dB;—F(Bg)dt)/\ea.
ag® ag° ag®

Essentially,i*6; (and hence®) depend on the values df close toJ?!, whereas; (and
hence2,,) depend on the values @fon (rather than near)?, spread out to a neighbourhood
using the projectior. It is, therefore, natural to ask whether the projectiois the more
fundamental object, and whether consideration of the fibraiee M is really necessary.



4274 D J Saunders et al

We may, however, be reassured by the fact that, if we are given an arbitrary affine
projection« : J't — J!, we may define a distribution of vertical vectors @n if two
elements of/ 1t map to the same element &} underx, then the vertical vector representing
their difference is deemed to be a member of the distribution (this is well definedisas
affine). In favourable circumstances this distribution will be integrable and the collection
of integral manifolds will form a manifold. The fibrationE — M will then give rise
to the projectiorne which we started with. Indeed, there is always a local projection from
J1z to J which will give rise to a local fibration of in just this way: we simply choose
coordinates orE in such a way that the constraints can be expressed in solved form.
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