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Abstract. A Lagrangian system subject to linear non-holonomic constraints may be represented
in several different geometrical frameworks. We describe one such framework, involving the
addition of an extra term to the Cartan 2-form� of the unconstrained system, which is dual to
the traditional approach of adding a reaction force to the unconstrained dynamical vector field
0. We show how this framework is closely related to the method of constructing a 2-form
�M when the constraints are given by a connection on an auxiliary bundle, as described in our
earlier work.

1. Introduction

Consider a mechanical system with non-holonomic constraints. In an earlier work [10]
we described a geometrical framework for such a system, where the bundleτ1 : E → R
represented the usual fibration of a configuration space, and where a connectionσ̃ on an
auxiliary bundleπ : E → M was used to construct the constraint manifoldJ 1

σ as an affine
sub-bundle ofJ 1τ1 → E. Many of the objects familiar from the geometrical study of
unconstrained systems had their analogues in this new framework: when the system was
derived from a LagrangianL we were able to use these objects to construct a fundamental
2-form�M and, at the same time, give an intrinsic description of the dynamics of the system
in terms of a second-order differential equation field (SODE)0 defined on the constraint
manifold.

The purpose of the present work is to look at two questions which arise naturally from
the construction we have described. The first concerns the choice of the auxiliary bundle
π : E → M. If coordinates onE are (t, qA) whereA = 1, . . . , n, and the constraints are
given by them equations

AaA(t, q)q̇A + ba(t, q) = 0

where the matrixAaA has maximal rank, we may solve these equations to givem of the
velocity coordinates (denoteḋqa) in terms of the otherk = n − m (denotedq̇α):

q̇a = Ba
α(t, q)q̇α + Ba(t, q).

We would then denote the coordinates onE by (t, qα, qa) and selectM to have coordinates
(t, qα). The point of our previous work was to consider the bundle structureπ : E → M as
part of the data, as is done also, for example, in the work of Blochet al [1]. Different choices
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of M, corresponding to different choices of the free and constrained velocity coordinates,
will give a different fundamental 2-form�M satisfying0c�M = 0. It is therefore of interest
to show that we may mimic some aspects of this construction to define a connectionσ̄ and
a fundamental 2-form̄� without making a particular choice of auxiliary bundle.

A second question arises when our approach is compared with the more traditional
one of constructing the SODE for the unconstrained problem onJ 1τ1, restricting it to the
constraint manifoldJ 1

σ , and then adding an additional vector field (representing the reaction
force) so that the result is a tangent toJ 1

σ ; see, for example, [5–7] for descriptions of this
approach, and [2, 11] for similar constructions in the autonomous case. When the additional
reaction force is expressed in terms of a basis constructed from the constraints and the
Lagrangian, its components are just the Lagrange multipliers used in the formulation of the
Euler–Lagrange equations. Again, we shall see that the fundamental 2-form�̄ incorporates
just these Lagrange multipliers in a natural way. In a significant sense, therefore, our
approach is dual to the traditional one.

2. Results

Let J 1(E, k + 1) denote the manifold of(k + 1)-dimensional contact elements overE. The
elements ofJ 1(E, k + 1) are equivalence classes of immersions ofRk+1 in E near a given
point, with equivalence when the immersions are tangents to each other at that point. The
bundleJ 1(E, k + 1) → E is, therefore, the(k + 1)-dimensional Grassmannian bundle over
E, and an element ofJ 1(E, k + 1) projecting toa ∈ E may be considered as a(k + 1)-
dimensional subspace ofTaE. In fact, J 1(E, k + 1) is slightly too large for our purposes:
if τ : E → R is the fibration of the configuration spaceE (this is the map denotedτ1 in
our earlier work [10]) we are interested in the open submanifoldJ 1

τ (E, k + 1) constructed
from immersions transversal to the fibres ofτ .

Each section̄σ : E → J 1
τ (E, k+1) defines a(k+1)-dimensional distribution onE. Let

J 1
σ be the set of jetsj1

t γ ∈ J 1τ where the tangent vector to the curveγ at γ (t) ∈ E lies in
the (k + 1)-dimensional subspacēσ(γ (t)) of Tγ (t)E; this definition does not depend on the
particular representativeγ of the jetj1

t γ , as it involves only first-order contact. With this
definition,J 1

σ becomes a submanifold ofJ 1τ , theconstraint submanifold. Furthermore, for
each point ofJ 1

σ the annihilator of the corresponding(k + 1)-dimensional subspace ofTaE

is anm-dimensional subspace ofT ∗
a E; pulling this back toJ 1

σ defines anm-dimensional co-
distributionH on J 1

σ (this is called the Chetaev bundle in [6], where a somewhat different
construction is used for constraints which are not necessarily linear). A 1-form onJ 1

σ taking
its values inH will be called aconstraint form. Finally, a vector field0̄ on J 1

σ will be
called a SODE field if it satisfies the conditions〈0̄, dt〉 = 1 and〈0̄, i∗(θ)〉 = 0, whereθ is
any contact form onJ 1τ and i : J 1

σ → J 1τ is the inclusion.
Our first result is given by the following theorem.

Theorem 1. Let L be a positive-definite Lagrangian onJ 1τ with Cartan 1-formθL, and
let σ̄ be a(k + 1)-dimensional distribution onE over τ . There is then a unique constraint
form η on J 1

σ with the property that the 2-form̄� defined by

�̄ = i∗(dθL) − dt ∧ η

contains exactly one SODE field̄0 in its kernel.

The proofs of this and the following two theorems will be given in section 3.
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To see the relationship of this result to our previous work, letM be a(k+1)-dimensional
manifold andπ : E → M a bundle: thenJ 1π is an open-dense submanifold ofJ 1(E, k+1)

(see, for example, [9] theorem 3.28). The bundleJ 1(E, k + 1) → E may be thought of
as the ‘projective completion’ of the affine bundleJ 1π → E. If we also requireM to be
fibred overR in such a way that the composite mapE → M → R is identical toτ , then
we always haveJ 1π ⊂ J 1

τ (E, k + 1).
A connection onπ is a sectionσ̃ : E → J 1π and is, a fortiori, also a section

σ̃ : E → J 1
τ (E, k + 1). There are, however, some sectionsσ̄ : E → J 1

τ (E, k + 1) which
do not take their values entirely withinJ 1π , and so do not arise from (global) connections
on the particular bundleπ : E → M: in coordinates adapted to this fibration, such sections
yield ‘infinite derivatives’ at certain points. To emphasize the link with connections onπ ,
we could also call any section̄σ : E → J 1

τ (E, k + 1) a (k + 1)-dimensional connection on
E overτ .

Let (t, qα, qa) be coordinates onE, chosen so that̄σ (restricted to this coordinate patch)
takes its values in the coordinate patch onJ 1

τ (E, k + 1) represented by(t, qα, qa, qa
t , qa

α):
this situation arises automatically if we have a bundleπ : E → M such thatσ̄ (E) ⊂ J 1π ,
and if the corresponding coordinates onM are (t, qα). The corresponding coordinates on
J 1τ are(t, qα, qa, q̇α, q̇a), andJ 1

σ may be described as in [10] by

q̇a = Ba
αq̇α + Ba.

The 1-forms

ηa = dqa − Ba
α dqα − Ba dt

defined locally onJ 1
σ span the co-distributionH . In these coordinates, the result stated in

theorem 1 is that there is a unique set of multiplier functionsλa such that the 2-form�̄

defined locally by

�̄ = i∗(dθL) − dt ∧ (λaη
a)

contains exactly one SODE field̄0 in its kernel.
In [10], we defined another 2-form�M by

�M = dθL̄ − dt ∧ (i∗9̇(dL) − N(dL̄))

whereL̄ = i∗L and, in coordinates,

N = ∂

∂qa
⊗ ηa

and

9̇ = Ca
αθα ⊗ ∂

∂q̇a
with Ca

α = dBa
α

dt
−

(
∂

∂qα
+ Bb

α

∂

∂qb

)
(Ba

β q̇β + Ba).

Theorem 2. If there exists a fibrationπ : E → M such thatσ̄ (E) ⊂ J 1π , then the SODE
field 0̄ (from theorem 1) also satisfies̄0c�M = 0.

Corollary. The SODE field0 constructed in [10] is independent of the chosen fibration.

We shall now compare this approach with the more traditional one of finding the
constrained SODE field by starting with the unconstrained SODE field and adding a
‘reaction’ force. This uses the construction of a distinguished sub-bundle of the vertical
bundleV J 1τ to represent the possible reaction forces (see, for example, [5], theorem 16; a
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similar approach is taken in [3] using almost-product structures). Each constraint formηa

then gives rise to a reaction vector fieldV a according to the following rules.
First, the LagrangianL is used to define a ‘fibre metric alongJ 1τ → E’ in the usual

way, so that ifX, Y are vertical vector fields onE then

g(X, Y ) = gαβXαY β + gaβXaY β + gαbX
αY b + gabX

aY b

where we have written, for example,gαβ for the submatrix∂2L/∂q̇α∂q̇β of the Hessian of
L. In generalg(X, Y ) is a function onJ 1τ , although when the Lagrangian is quadratic in
the velocity coordinates we may also considerg(X, Y ) as a well defined function onE. At
each pointu ∈ J 1

σ projecting top ∈ E, this ‘metric’ defines a mapg#
u : V ∗

p E → VpE such
that, considering an element ofV ∗

p E as an equivalence class of cotangent vectors,

g#
u([η

a(u)]) = hab(u)
∂

∂qb

∣∣∣∣
p

+ haβ(u)
∂

∂qβ

∣∣∣∣
p

.

In this formula we have writtenhab = gab − Ba
αgαb and haβ = gaβ − Ba

αgαβ , wheregAB

is the inverse of the Hessian matrixgAB , andgαβ , etc are its various submatrices. At each
point u ∈ J 1

σ , there is also a canonical vertical lift operatorvu sending a vector inVpE to
a vector inVuJ

1τ , so that

vu

(
∂

∂qb

∣∣∣∣
p

)
= ∂

∂q̇b

∣∣∣∣
u

vu

(
∂

∂qβ

∣∣∣∣
p

)
= ∂

∂q̇β

∣∣∣∣
u

.

We then define

V a(u) = vu(g
#
u([η

a(u)]))

so that the vector fieldV a along the inclusioni : J 1
σ → J 1τ is represented in coordinates

as

V a = hab ∂

∂q̇b
+ haβ ∂

∂q̇β
.

We can now state our final result.

Theorem 3. Let 0 be the SODE field onJ 1τ for the unconstrained Lagrangian system
with LagrangianL, so that0cdθL = 0. Then the vector field̄0 alongi : J 1

σ → J 1τ defined
locally by

0̄ = 0|J 1
σ

+ λaV
a

is tangent toJ 1
σ , and is the unique SODE field onJ 1

σ satisfying0̄c�̄ = 0.

3. Proofs

To prove theorem 1, we shall obtain the equations in local coordinates which must be
satisfied by the components of�̄, and show that they have a unique solution.

We start by writing dθL in coordinates as

dθL = ∂2L

∂qA∂q̇B
θA ∧ θB + gABωA ∧ θB

where the ‘force forms’ωA = dq̇A −FA dt are chosen so that the above expression contains
no separate terms in dt ∧ θB . If 0̄ is a SODE field onJ 1

σ then〈0̄, i∗θA〉 = 0, so that

0̄ci∗ dθL = i∗(gAB)〈0̄, i∗ωA〉i∗θB.



Non-holonomic Lagrangian systems: II 4269

Letting θβ also denote contact forms pulled back toJ 1
σ as well as those forms on the whole

of J 1τ , we have

i∗θβ = θβ i∗θb = ηb + Bb
βθβ.

Put ω̄α = dq̇α − F̄ α dt , where the new force functions̄Fα are to be determined. Then

i∗ωa =
(

Ba
αF̄ α − Fa + q̇α dBa

α

dt
+ dBa

dt

)
dt + · · ·

where ‘· · ·’ represents terms in̄ωβ , θβ andηb. In this expression, we have written d/dt for
the restriction of the total time derivative toJ 1

σ so that, for example,

dBa

dt
= ∂Ba

∂t
+ q̇β ∂Ba

∂qβ
+ (Bb

βq̇β + Bb)
∂Ba

∂qb
.

We have also omitted the pullback mapi∗ operating on functions where there will be no
confusion. If0̄ is such that〈0̄, ω̄α〉 = 0, we find that

0̄ci∗dθL =
(

haβ

(
Ba

αF̄ α − Fa + q̇α dBa
α

dt
+ dBa

dt

)
+ hαβ(F̄ α − Fα)

)
θβ

+
(

gab

(
Ba

αF̄ α − Fa + q̇α dBa
α

dt
+ dBa

dt

)
+ gαb(F̄

α − Fα)

)
ηb

wherehaβ = gaβ + gabB
b
β and hαβ = gαβ + gαbB

b
β . We shall, therefore, be able to solve

0̄c(i∗ dθL − dt ∧ (λaη
a)) = 0 if we can choose the functions̄Fα so that the coefficients

of θβ vanish; the multiplier functionsλa will then be determined automatically. But those
coefficients may be written in the form

(Ba
αhaβ + hαβ)F̄ α + · · ·

and the matrixBa
αhaβ + hαβ is non-singular by virtue of the positive-definiteness ofgAB

(it is, essentially, just the restriction ofgAB to vectors whose vertical lifts are tangent to
the constraint manifold). It follows that there is a unique local solution to the equations;
uniqueness implies that the solutions may be glued together to give a unique global SODE
field 0̄ and a unique constraint formη, completing the proof of theorem 1.

A different way to arrive at the same conclusion, offering a further insight into the
nature of the SODE field̄0 and the multipliersλa, goes as follows. It is easy to verify that

i∗θL = L̄ dt + ∂L̄

∂q̇α
θα +

(
i∗

∂L

∂q̇a

)
ηa.

In computing the exterior derivative of this form, we make use of the following local basis
of vector fields onJ 1

σ (compare with [10]):

Xα = ∂

∂qα
+ Ba

α

∂

∂qa
,

∂

∂qa
, 0̄,

∂

∂q̇α

with dual basis of 1-forms

θα, ηa, dt, ω̄α = dq̇α − F̄ α dt.

Here, of course, thēFα and the corresponding expression for0̄ are again as yet to be
determined. For anyf ∈ C∞(J 1

σ ) we therefore write

df = Xα(f )θα + ∂f

∂qa
ηa + 0̄(f ) dt + ∂f

∂q̇α
ω̄α.
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Proceeding in this way we find, for example,

dηa = −Ca
α dt ∧ θα − ∂

∂qb
(Ba

α q̇α + Ba)ηb ∧ dt − Xβ(Ba
α)θβ ∧ θα − ∂Ba

α

∂qb
ηb ∧ θα.

The calculation ofi∗ dθL is now a straightforward matter and yields

i∗ dθL =
[
0̄

(
∂L̄

∂q̇α

)
− Xα(L̄) −

(
i∗

∂L

∂q̇a

)
Ca

α

]
dt ∧ θα

+
[
0̄

(
i∗

∂L

∂q̇a

)
− i∗

∂L

∂qa

]
dt ∧ ηa + · · ·

where all the terms contained in the ‘· · ·’ part are made up of factors involving onlyθα,
ηa and ω̄α. Several things can be learned from this expression. First, we see another
manifestation of theorem 1: there is a unique way to eliminate the terms in dt ∧ ηa and the
resulting form�̄ then has a specific SODE field̄0 in its kernel. What we see in addition
here is that this SODE field̄0 is determined by

0̄

(
∂L̄

∂q̇α

)
= Xα(L̄) +

(
i∗

∂L

∂q̇a

)
Ca

α

and that the multipliersλa can in fact be expressed as

λa = 0̄

(
i∗

∂L

∂q̇a

)
− i∗

∂L

∂qa
.

The determining relation for̄0 confirms that, in the case of a fibrationπ : E → M, we are
talking about the same reduced dynamics (onJ 1

σ ) as the one which was uniquely determined
in [10] by the condition0̄c�M = 0, thus proving theorem 2. Note further that the regularity
of the matrixBa

αhaβ +hαβ in this alternative description corresponds to the regularity of the
Hessian matrix∂2L̄/∂q̇α∂q̇β , which again is consistent with [10].

To prove theorem 3, we shall find the coordinate expression of the reaction force which
must be added to an unconstrained SODE field0 to give the constrained field̄0, and
show that the equations so found are identical to those obtained in the proof of theorem 1.
Therefore let

0 = ∂

∂t
+ q̇A ∂

∂qA
+ FA ∂

∂q̇A

as usual, and requirē0 to be a SODE field onJ 1
σ : in terms of the coordinates onJ 1τ , we

obtain

0̄ = ∂

∂t
+ q̇α ∂

∂qα
+ (Ba

α q̇α + Ba)
∂

∂qa
+ F̄ α ∂

∂q̇α
+

(
Ba

αF̄ α + q̇α dBa
α

dt
+ dBa

dt

)
∂

∂q̇a

where the coefficient of∂/∂q̇a comes from the requirement that0̄ be tangent toJ 1
σ . We

want the difference between0|J 1
σ

and 0̄ to be a reaction force, so put

0̄ = 0|J 1
σ

+ λaV
a.

Then the equations to be solved forF̄ α are

F̄ α − Fα = λbh
bα χa = λbh

ba

where we have written

χa = Ba
αF̄ α − Fa + q̇α dBa

α

dt
+ dBa

dt
.
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The theorem will be proved if we can show that these equations are the same as the equations
we obtained in the proof of theorem 1. But those earlier equations, rewritten in terms of
χa, are

hαβ(F α − F̄ α) = haβχa

gαb(F
α − F̄ α) = gabχ

a − λb

and it is straightforward to check, using the identities

hcαgαb = δc
b − hcagab

and

hcαhαβ = −hcahaβ

that the two sets of equations are, indeed, identical.

4. An example

Consider a sled which is constrained to move so that its velocity is always in the direction
of its orientation (see, for example, [8] p 94). If the coordinates on the configuration
manifoldE = R× (R2 ×S1) are(t, x, y, φ), wherex, y represent position andφ represents
orientation, then the constraint may be written in the form

ẏ = ẋ tanφ

for most values ofφ, and the Lagrangian (putting for simplicity the mass and the moment
of inertia equal to unity) is

L = 1
2(ẋ2 + ẏ2 + φ̇2).

To find the 2-form�̄ described above, we start with the Cartan form

θL = ẋ dx + ẏ dy + φ̇ dφ − 1
2(ẋ2 + ẏ2 + φ̇2) dt

so that

i∗ dθL = (tanφ dẋ + ẋ sec2 φ dφ) ∧ (ηy + tanφ θx) + dẋ ∧ θx + dφ̇ ∧ θφ

whereθx, θφ are the contact forms andηy = dy−tanφ dx is the constraint form. Expressing
i∗ dθL in terms of force forms̄ωx, ω̄φ , we find that the existence of a SODE field0̄ satisfying

0̄c(i∗ dθL − λ dt ∧ ηy) = 0

gives the condition

(Fx + ẋφ̇ tanφ) sec2 φ θx + Fφθφ + (Fx tanφ + ẋφ̇ sec2 φ − λ)ηy = 0

so that

Fx = −ẋφ̇ tanφ Fφ = 0 λ = ẋφ̇.

Hence

�̄ = sec2 φ ωx ∧ θx + tanφ ωx ∧ ηy + ωφ ∧ θφ + ẋ sec2 φ θφ ∧ ηy + ẋ sec2 φ tanφ θφ ∧ θx

and

0̄ = ∂

∂t
+ ẋ

∂

∂x
+ ẋ tanφ

∂

∂y
+ φ̇

∂

∂φ
− ẋφ̇ tanφ

∂

∂ẋ
.
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Note in passing that the explicit formula we obtained for the multipliers would for this
example read

λ = 0̄

(
i∗

∂L

∂ẏ

)
= 0̄(ẋ tanφ)

and confirms that indeedλ = ẋφ̇.
We may now take a manifoldM with coordinates(t, x, φ) so that, in the notation of

[10] with L̄ = i∗L,

L̄ = 1
2(ẋ2 sec2 φ + φ̇2)

and

dθL̄ = sec2 φ dẋ ∧ θx + dφ̇ ∧ θφ + ẋ tanφ sec2 φ(dφ ∧ θx + dφ ∧ dx).

Then we use the formula

�M = dθL̄ − dt ∧ (i∗9̇(dL) − N(dL̄))

where

N = ∂

∂y
⊗ ηy

and

9̇ = (φ̇ sec2 φ θx − ẋ sec2 φ θφ) ⊗ ∂

∂y

so that

�M = sec2 φ dẋ ∧ θx + dφ̇ ∧ θφ + ẋ tanφ sec2 φ θφ ∧ θx + ẋ tanφ sec2 φ dφ ∧ θx.

It is straightforward to check that̄0c�M = 0.
Now suppose we choose a different fibrationE → M ′ where M ′ has coordinates

(t, y, φ), so that

ẋ = ẏ cotφ

ηx = dx − cotφ dy

�̄ = −ẏ cosec2 φ θφ ∧ ηx − ẏ cotφ cosec2 φ θφ ∧ θy + cotφ ωy ∧ ηx

+cosec2 φ ωy ∧ θy + ωφ ∧ θφ

�M ′ = cosec2 φ ωy ∧ θy − 2ẏ cosec2 φ cotφ θφ ∧ θy + ωφ ∧ θφ

0̄ = ∂

∂t
+ ẏ cotφ

∂

∂x
+ ẏ

∂

∂y
+ φ̇

∂

∂φ
+ ẏφ̇ cotφ

∂

∂ẏ
.

Observe that these expressions for�̄ and 0̄ are the ones which also follow from the
coordinate transformatioṅx = ẏ cotφ applied to the original expressions, whereas this is
not the case for the relationship between�M and�M ′ . This precisely reflects the fact that
�̄ and 0̄ are independent of the choice of a fibration, whereas�M is not.

Finally, we may consider the SODE for the unconstrained problem,

0 = ∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ φ̇

∂

∂φ

and add to it a multiple of

V = ∂

∂ẏ
− tanφ

∂

∂ẋ
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so that the result is a tangent toJ 1
σ . We find that

λ

(
∂

∂ẏ
− tanφ

∂

∂ẋ

)
= (ẋφ̇ sec2 φ + Fx tanφ)

∂

∂ẏ
+ Fx

∂

∂ẋ
+ Fφ

∂

∂φ

so that, as before,

Fx = −ẋφ̇ tanφ Fφ = 0 λ = ẋφ̇.

5. Discussion

Given a system with a Lagrangian, a major objective is the construction of the associated
SODE field, as this will describe the system’s motion. For non-holonomic systems, the
traditional method starts with the unconstrained SODE field and adds a vertical vector field
to represent the reaction forces; at each point, the reaction vector must lie in a subspace
described using the Lagrangian ‘metric’. In contrast the construction of�̄ = � − dt ∧ η,
as a 2-form with a suitable SODE field in its kernel, involves that metric only in the proof
that there is a unique constraint formη with the requisite property. This latter approach,
dual to the former one, is perhaps the more straightforward. (An approach described in [3]
using almost-product structures apparently also leads to the 2-form�̄ [4].)

There are, nevertheless, significant questions which arise if this point of view is adopted.
In holonomic dynamics, there is a clear prescription for constructing the 2-form� from
which the motion of the system will be determined: that is,� = dθL. In non-holonomic
dynamics, this is no longer the case. We may always construct the 2-form�̄, but given
a suitable fibrationE → M we may also construct the 2-form�M : indeed, the latter
is not unique, as a different fibrationE → M ′ may give rise to a different 2-form�M ′ .
Furthermore, the availability of such a fibration permits the further analysis of the system
in terms of the dynamical covariant derivative and the Jacobi endomorphism, as we have
described elsewhere. It is, therefore, of some interest to see how all these 2-forms are
related.

Clearly, the difference between̄� and�M must arise from the difference betweeni∗θL

and θL̄. From [10] the constrained Cartan formθL̄ is given byθL̄ = L̄ dt + S̄c dL̄, where
the fibrationE → M has been used to define a projectionκ : J 1τ → J 1

σ and the vertical
endomorphismS on J 1τ then projects onto the vertical endomorphismS̄ on J 1

σ . As we
observed in the proof of theorem 2, we have

i∗θL = θL̄ + i∗
∂L

∂q̇a
ηa

from which it follows that

�̄ = �M + dt ∧ (i∗9̇(dL) − N(dL̄)) + dt ∧ λaη
a + d

(
i∗

∂L

∂q̇a
ηa

)
.

Using the coordinate expressions for9̇ andN (see [10]) and the formulae forλa and dηa

obtained earlier, it is thus easy to check that

�̄ = �M +
(

d

(
i∗

∂L

∂q̇a

)
− 0̄

(
i∗

∂L

∂q̇a

)
dt

)
∧ ηa − i∗

∂L

∂q̇a

(
dBa

α − 0̄(Ba
α) dt

) ∧ θα.

Essentially,i∗θL (and hence�̄) depend on the values ofL close toJ 1
σ , whereasθL̄ (and

hence�M ) depend on the values ofL on (rather than near)J 1
σ , spread out to a neighbourhood

using the projectionκ. It is, therefore, natural to ask whether the projectionκ is the more
fundamental object, and whether consideration of the fibrationE → M is really necessary.
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We may, however, be reassured by the fact that, if we are given an arbitrary affine
projectionκ : J 1τ → J 1

σ , we may define a distribution of vertical vectors onE: if two
elements ofJ 1τ map to the same element ofJ 1

σ underκ, then the vertical vector representing
their difference is deemed to be a member of the distribution (this is well defined asκ is
affine). In favourable circumstances this distribution will be integrable and the collection
of integral manifolds will form a manifoldM. The fibrationE → M will then give rise
to the projectionκ which we started with. Indeed, there is always a local projection from
J 1τ to J 1

σ which will give rise to a local fibration ofE in just this way: we simply choose
coordinates onE in such a way that the constraints can be expressed in solved form.
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